一、问题描述

朋友圈问题是一类图论问题,它的定义是查找一个给定的朋友圈(Friend Circle)中,所有朋友的朋友圈。一个朋友圈是一组朋友,这组朋友中任意两个朋友都是互相认识的。

二、解决方案

1、深度优先搜索(Depth First Search,DFS):DFS 是一种用于遍历图的算法,它以深度优先的方式遍历图,从而找出所有朋友圈。

2、广度优先搜索(Breadth First Search,BFS):BFS 是一种用于遍历图的算法,它以广度优先的方式遍历图,从而找出所有朋友圈。

3、Kruskal 算法:Kruskal 算法是一种用于求解最小生成树的算法,它可以用来求解朋友圈问题。

4、Prim 算法:Prim 算法也是一种用于求解最小生成树的算法,它也可以用来求解朋友圈问题。

三、代码实现

以下是使用 C++ 来实现 Kruskal 算法的代码:

123456789101112131415161718192021222324252627282930#include <iostream>#include <vector>#include <algorithm>using namespace std;struct Edge {int src, dest, weight;};struct Graph {int V, E;vector<Edge> edges;};struct subset {int parent;int rank;};int find(subset subsets[], int i) {if (subsets[i].parent != i)subsets[i].parent = find(subsets, subsets[i].parent);return subsets[i].parent;}void Union(subset subsets[], int x, int y) {int xroot = find(subsets, x);int yroot = find(subsets, y);if (subsets[xroot].rank < subsets[yroot].rank)subsets[xroot].parent = yroot;else if (subsets[xroot].rank > subsets[yroot].rank)subsets[yroot].parent = xroot;else {subsets[yroot].parent = xroot;subsets[xroot].rank++;}}int Kruskal(Graph graph) {int V = graph.V;Edge result[V];  // Tnis will store the resultant MSTint e = 0;  // An index variable, used for result[]int i = 0;  // An index variable, used for sorted edgessort(graph.edges.begin(), graph.edges.end());subset *subsets = new subset[( V * sizeof(subset) )];for (int v = 0; v < V; ++v) {subsets[v].parent = v;subsets[v].rank = 0;}while (e < V - 1) {Edge next_edge = graph.edges[i++];int x = find(subsets, next_edge.src);int y = find(subsets, next_edge.dest);if (x != y) {result[e++] = next_edge;Union(subsets, x, y);}}int cost = 0;for (i = 0; i < e; ++i)cost += result[i].weight;return cost;}
C++