一、问题描述

朋友圈问题是一类图论问题,它的定义是查找一个给定的朋友圈(Friend Circle)中,所有朋友的朋友圈。一个朋友圈是一组朋友,这组朋友中任意两个朋友都是互相认识的。

二、解决方案

1、深度优先搜索(Depth First Search,DFS):DFS是一种用于遍历图的算法,它以深度优先的方式遍历图,从而找出所有朋友圈。

2、广度优先搜索(Breadth First Search,BFS):BFS是一种用于遍历图的算法,它以广度优先的方式遍历图,从而找出所有朋友圈。

3、Kruskal算法:Kruskal算法是一种用于求解最小生成树的算法,它可以用来求解朋友圈问题。

4、Prim算法:Prim算法也是一种用于求解最小生成树的算法,它也可以用来求解朋友圈问题。

三、代码实现

以下是使用C++来实现Kruskal算法的代码:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Edge {
int src, dest, weight;
};

struct Graph {
int V, E;
vector<Edge> edges;
};

struct subset {
int parent;
int rank;
};

int find(subset subsets[], int i) {
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);

return subsets[i].parent;
}

void Union(subset subsets[], int x, int y) {
int xroot = find(subsets, x);
int yroot = find(subsets, y);

if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}

int Kruskal(Graph graph) {
int V = graph.V;
Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges
sort(graph.edges.begin(), graph.edges.end());

subset *subsets = new subset[( V * sizeof(subset) )];

for (int v = 0; v < V; ++v) {
subsets[v].parent = v;
subsets[v].rank = 0;
}

while (e < V - 1) {
Edge next_edge = graph.edges[i++];

int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);

if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
}

int cost = 0;
for (i = 0; i < e; ++i)
cost += result[i].weight;

return cost;
}