LeetCode如何实现最大正方形
问题描述
给定一个由0和1组成的二维矩阵,找到只包含1的最大正方形并返回其面积。
动态规划思想
对于一个元素matrix[i][j],它代表以该元素作为正方形右下角的最大正方形的边长。我们用dp[i][j]表示以元素matrix[i][j]为右下角的最大正方形的边长。
根据动态规划的思想,我们可以得到以下状态转移方程:
if matrix[i][j] == 1:
dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
else:
dp[i][j] = 0其中,初始化dp数组的第一行和第一列为矩阵的第一行和第一列。
求解最大正方形的面积
通过动态规划得到了以每个元素作为右下角的最大正方形的边长,我们只需要遍历整个dp数组,将最大的边长平方即为所求的最大正方形的面积。
max_side = 0
for i in range(row):
for j in range(col):
max_side = max(max_side, dp[i][j])
ans = max_side ** 2
return ans其中,row和col分别表示矩阵的行数和列数。
时间复杂度和空间复杂度
通过动态规划的思路,我们需要遍历整个矩阵一遍,时间复杂度为O(m*n),其中m和n分别表示矩阵的行数和列数。而使用了dp数组来存储每个元素作为右下角的最大正方形的边长,因此需要额外的O(m*n)的空间来存储dp数组。
综上所述,求解最大正方形的面积的时间复杂度为O(m*n),空间复杂度为O(m*n)。
上一篇
如何定义python装饰器 猜您想看
-
如何编写optional .proto文件
一、什么是op...
2023年05月25日 -
Oracle怎么根据表名查找表空间及数据文件的地址
根据表名查找表...
2023年07月21日 -
svn卓繁打包工具是什么
什么是svn卓...
2023年05月22日 -
如何使用Spring Session 与 Spring security 完成网站登录改造
一、Sprin...
2023年05月26日 -
怎么防止下拉列表控件的EditvalueChanged事件进入死循环
一、理解Edi...
2023年05月25日 -
如何将Windows设置为卡片式窗口布局
1. 启用卡片...
2023年05月15日